Printed Page:-	Subject Code:- BMICA0203 Roll. No:			
	Kon. No.			
NOIDA INSTITUTE OF ENGINEERING	AND TECHNOLOGY, GREATER NOIDA			
(An Autonomous Institute Affiliated to AKTU, Lucknow)				
MCA (In	_			
SEM: II - THEORY EXAL	MINATION (20 20) Mathematics-II			
Time: 3 Hours	Max. Marks: 100			
General Instructions:	1124111 1124111111 200			
IMP: Verify that you have received the question	paper with the correct course, code, branch etc.			
1. This Question paper comprises of three Section	ns -A, B, & C. It consists of Multiple Choice			
Questions (MCQ's) & Subjective type questions.				
2. Maximum marks for each question are indicated3. Illustrate your answers with neat sketches whe	· · · · · · · · · · · · · · · · · · ·			
4. Assume suitable data if necessary.	rever necessary.			
5. Preferably, write the answers in sequential ora	ler.			
6. No sheet should be left blank. Any written mate	erial after a blank sheet will not be			
evaluated/checked.				
SECTION-A	20			
1. Attempt all parts:-				
1-a. $\int_{-\infty}^{3} \frac{x}{dx} =$	1			
J_2 2 $^{\text{tx}}$ (CO1,K3)	1			
(a) $1/4$				
(b) 3/4				
(c) 5/4	3			
(d) 2				
	1			
1-b. $\int_{\mathbf{k}} d\mathbf{x} \text{ is: } (CO1, K1)$				
(a) kx				
(b) kx+c				
(c) k+c				
(d) Undefined				
$\frac{dy}{dt} = 5$	1			
The value of y in equation dx is ((CO2,K2)			
(a) 5				
(b) x+5				
(c) 5x				
(d) 5x+C				
1-d. The P.I. of $(D^2 + 2)y = \sin x$ is $(CO2, H)$	K3) 1			

	(a)	$-\cos(x)$	
	(b)	$\cos(x)$	
	(c)	$\sin(\mathbf{x})$	
	(d)	$-\sin(x)$	
1-e.	C	onsider a poset with elements $\{x, y, z\}$ and the order relation defined as $x \le y$ z.Then LUB of x and z is (CO3,K2)	1
	(a)	X	
	(b)	У	
	(c)	z	
	(d)	None of the above	
1-f.	A	complemented lattice is a lattice in which: (CO3,K1)	1
	(a)	Every element has a unique complement	
	(b)	Every element has at least one complement	
	(c)	There exists a top element and a bottom element	
	(d)	The lattice is distributive	
1-g.		he function $f(x,y) = x^2 + 2xy + y^2 + 4x - 2y + 3$ has a critical point at (-1). Then (CO4,K3)	1
	(a)	The critical point is a maximum of the function	
	(b)	The critical point is a minimum of the function	
	(c)	Further investigation is needed	
	(d)	The critical point is a saddle point of the function	
1-h.	If	$rt-s^2 > 0$ and $r<0$ at (a, b) then (CO4,K1)	1
	(a)	(a, b) is a local minimum point	
	(b)	(a, b) is a saddle point	
	(c)	(a, b) is a local maximum point	
	(d)	Further investigation is needed	
1-i.		books be selected from a shelf containing 10 books in number of ways	1
	(a)	130	
	(b)	140	
	(c)	150	
	(d)	120	
1-j.		sum of Rs. 2,500 is invested at a rate of 10% per annum compounded annually. he amount will be after 2 years is(CO5,K3)	1
	(a)	3000	
	(b)	3075	
	(c)	3050	
	(d)	3025	

2. Attemp	pt all parts:-	
2.a.	Evaluate $\int (e^{2x} + \cos x - 1) dx$. (CO1.K3)	2
2.b.	Determine I.F. of $\frac{dy}{dx} + x^2y = \cos x$ (CO2, K3)	2
2.c.	Define a maximal and minimal element in a Poset. (CO3, K1)	2
2.d.	Find the second order partial derivative of $f(x,y) = x^3 + 2xy^2$ with respect to y. (CO4,K3)	2
2.e.	Samantha is the grandmother of Lily. Lily's father is Daniel. Find Daniel relationship with Samantha. (CO5, K2)	2
SECTIO	<u>N-B</u>	30
3. Answe	er any <u>five</u> of the following:-	
3-a.	Solve the integral $\int \frac{1}{(x+3)(x+2)} dx$. (CO1,K3)	6
3-b.	$\int_{0}^{\pi/2} x \cos x dx$ Integrate (CO1,K3)	6
3-c.	Using method of integrating factors, Solve: $\frac{dy}{dx} + y = e^{-x}$ (CO2,K3)	6
3-d.	Using method of variable separable, Solve: $\frac{dy}{dx} = \frac{5y}{x}$ (CO2,K3)	6
3.e.	Check whether $R=(\{2,3,7,9,12\},\leq)$ is reflexive transitive or asymmetric. Also find out whether this is Poset or not.(CO3,K3).	6
3.f.	Examine for maximum and minimum value of the function $u=x^2-3xy+y^2+2x$. (CO4,K3)	6
3.g.	A solution contains alcohol and water in the ratio of 4:9. Calculate how much water should be added to 20 liters of the solution to make the ratio 1:2. (CO5, K3)	6
SECTIO	<u>N-C</u>	50
4. Answe	er any <u>one</u> of the following:-	
4-a.	Evaluate by Substitution: $\int (7x^2 + 8x - 5)^6 (7x + 4) dx$. (CO1,K3)	10
4-b.	Determine $\int_0^1 5x\sqrt{1-x^2} dx$. (CO1,K3)	10
5. Answe	er any one of the following:-	

5-a. Solve:
$$\frac{d^{2y}}{dx^2} + 14\frac{dy}{dx} + 49y = e^{-7x}$$
 (CO2,K3)

5-b. Solve:
$$(D^2 - 5D + 6)y = \sin x$$
 (CO2,K3)

6. Answer any one of the following:-

Explain the concept of a lattice and its connection to the join and meet operations. 6-a. 10 Prove that poset $S = (\{D_{36}\}, /)$ is lattice. (CO3, K3)

- 6-b. Draw the Hasse diagram for the divisibility relation on each of the following sets. (CO3, K3)
- 10

- a) $A = \{2,3,4,12,24,36,48\}$
- b) $A = \{3,6,9,12,24,48\}$
- 7. Answer any one of the following:-
- 7-a.

If
$$z=f(y/x)$$
, then Show that $x \frac{\delta z}{\delta x} + y \frac{\delta z}{\delta y} = 0$. (CO4,K3)

7-b.

If
$$u = tan^{-1} \left(\frac{x^3 + y^3}{x - y} \right)$$
 prove that by EULERS THEOREM
$$x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 2 \sin u \cos u$$
(CO4.K3)

(CO4,K3)

- 8. Answer any <u>one</u> of the following:-
- 8-a. (I). The average age of four members of a family is 52 years. One new member joins the family and the average age becomes 50. Determine the age of that new member.
 - (II). In the first 10 overs of a cricket game, the run rate was only 3.2. Calculate the run rate in the remaining 40 overs to reach the target of 282 runs. (CO5, K3)
- (i) Alice walks 2 kilometers north, then turns and walks 3 kilometers east. How far 8-b. 10 is she from her starting point, and in which direction?
 - (ii) A car travels 40 kilometers north, then turns and travels 30 kilometers west. .ve, .ng point What is the straight-line distance between its starting point and final position? (CO5,K3)